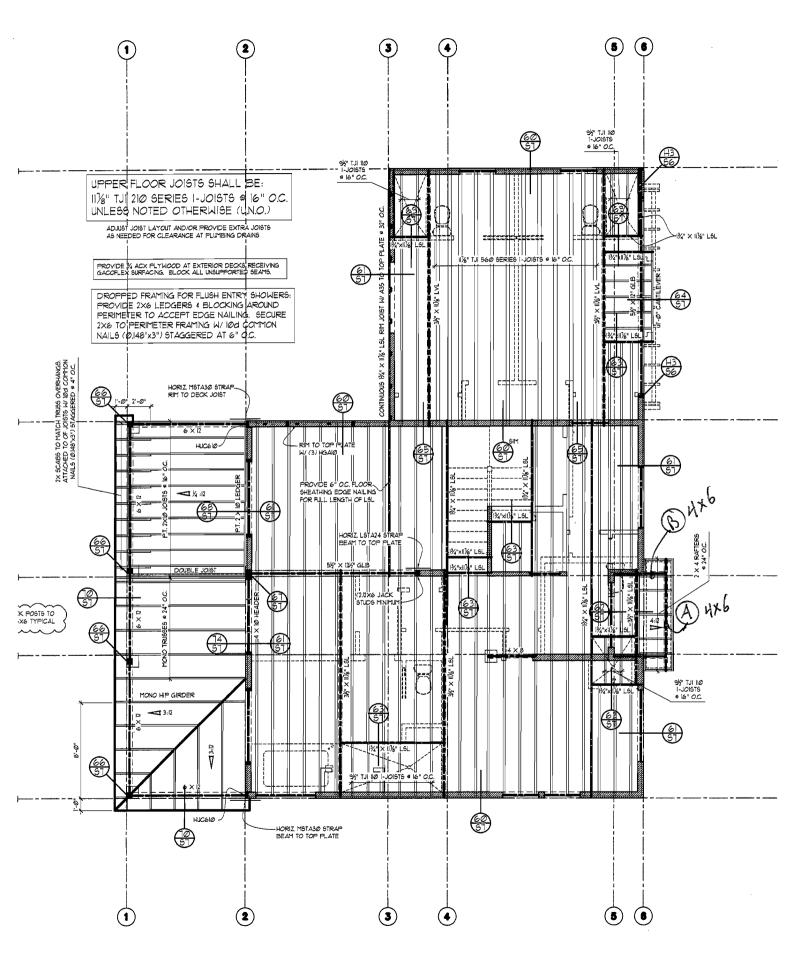
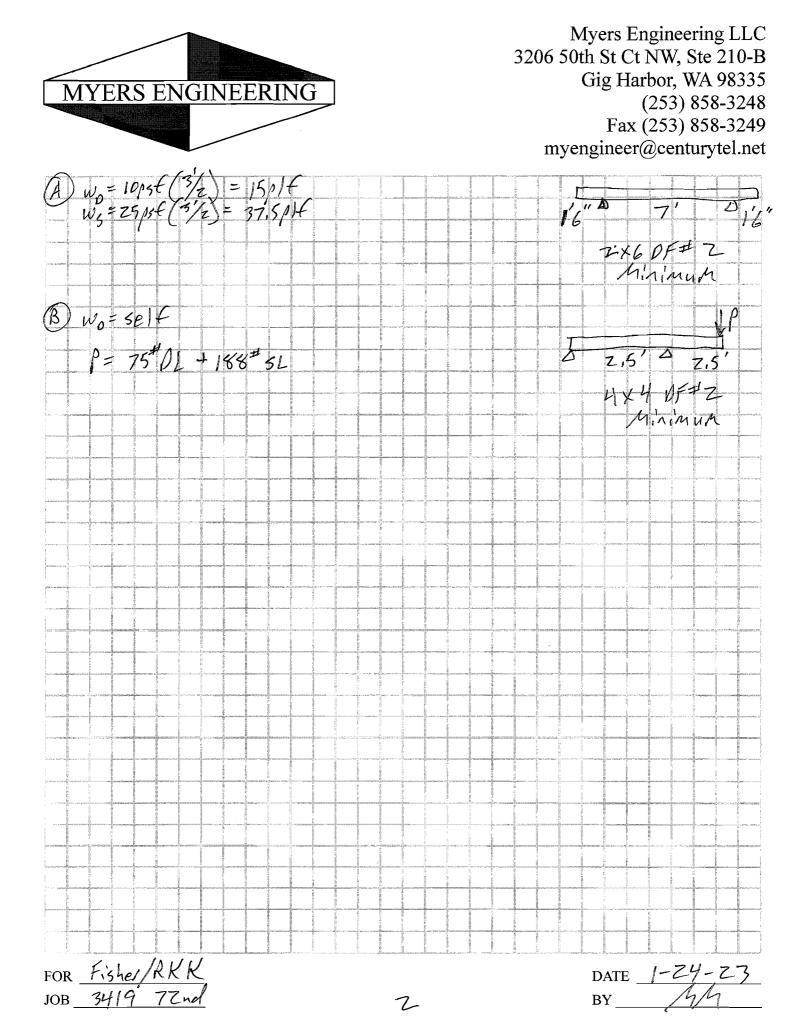
# MYERS ENGINEERING

# Addendum to Structural Calculations



Digitally signed by Mark Myers, PE Date: 2023.02.07 18:44:00 -08'00'


MUST BEAR ORIGINAL BLUE INK SIGNATURE OR DIGITAL PDF SIGNATURE FOR PERMIT SUBMITTAL.


Project: SFR of RKK Construction 3419 72<sup>nd</sup> Place Southeast Mercer Island, WA

February 7, 2023

2018 INTERNATIONAL BUILDING CODE 100 MPH BASIC WIND, EXPOSURE B,  $K_{zt} = 1.00$ RISK CATEGORY II - SOIL SITE CLASS D SEISMIC DESIGN CATEGORY D (IBC)

3206 50<sup>th</sup> Street Court, Suite 210-B Gig Harbor, WA 98335 Phone: 253-858-3248 Email: myengineer@centurytel.net





| ild:20.22.12.28                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . (0) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INC 1983-202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gn: A.P                                                                                                                                                                                 | orch Roof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | beam                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | culations per ND                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S 2018, IBC 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19, ASCE 7-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6. Sawn, Ful                                                                                                                                                                            | lv Unbrace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ing Allowable S                                                                                                                                                                         | tress Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | with IBC 2018                                                                                                                                                                                                                                                                                                                                                           | Load Comb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | inations, Majo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or Axis Bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 900.0 psi<br>900.0 psi<br>900.0 psi                                                                                                                                                     | Fc - Prll<br>Fc - Perp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,350.0 psi<br>625.0 psi                                                                                                                                                                                                                                                                                                                                                | Fv<br>Ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180.0 psi<br>575.0 psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ebend- xx<br>Eminbend - xx                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,600.0 ksi<br>580.0 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.210 pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 150, S = 0.037                                                                                                                                                                          | 50 k/ft, Trib= <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0 ft                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Γ                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D(0.0150)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S(0.03750)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Y</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                         | at 3.500 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in Span # 2                                                                                                                                                                                                                                                                                                                                                             | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2x6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| +D+S                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 29.40 psi                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in Span # 2                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| +D+S                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.007 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>W</u> <u>E</u>                                                                                                                                                                                                                                                                                                                                                       | <u>н</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.067 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.08                                                                                                                                                                                    | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1251<br>: +D+S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Transient Ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.041 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : +D+S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| gn: B.S                                                                                                                                                                                 | upport Bea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | am for Porch                                                                                                                                                                                                                                                                                                                                                            | Roof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | culations per ND                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S 2018, IBC 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3, CBC 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19, ASCE 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4, Sawn, Ful                                                                                                                                                                            | ly Unbrace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| na Allowable St                                                                                                                                                                         | tress Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | with IBC 2018                                                                                                                                                                                                                                                                                                                                                           | Load Comb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | inations, Majo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or Axis Bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e·No2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| uglasFir-Larch<br>900.0 psi                                                                                                                                                             | Fc - Prll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,350.0 psi                                                                                                                                                                                                                                                                                                                                                             | Fν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wood Grad<br>180.0 psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ebend- xx                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,600.0 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.210 pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uglasFir-Larch                                                                                                                                                                          | Fc - Prll<br>Fc - Perp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,350.0 psi<br>625.0 psi                                                                                                                                                                                                                                                                                                                                                | Fv<br>Ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wood Grad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,600.0 ksi<br>580.0 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.210 pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uglasFir-Larch<br>900.0 psi<br>900.0 psi                                                                                                                                                | Fc - Perp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 625.0 psi                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wood Grad<br>180.0 psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ebend- xx                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.210 pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uglasFir-Larch<br>900.0 psi                                                                                                                                                             | Fc - Perp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 625.0 psi                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wood Grad<br>180.0 psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ebend- xx                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.210 pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uglasFir-Larch<br>900.0 psi<br>900.0 psi<br>alculated and ad<br>, S = 0.1880 k                                                                                                          | Fc - Perp<br>dded to loads<br>@ 5.0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 625.0 psi                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wood Grad<br>180.0 psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ebend- xx                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.210 pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uglasFir-Larch<br>900.0 psi<br>900.0 psi<br>alculated and ad<br>, S = 0.1880 k<br>0.720<br>1,118.04 psi<br>1,552.50 psi                                                                 | Fc - Perp<br>dded to loads<br>@ 5.0 ft<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 625.0 psi                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wood Grad<br>180.0 psi<br>575.0 psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ebend- xx                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 580.0 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.210 pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uglasFir-Larch<br>900.0 psi<br>900.0 psi<br>alculated and ad<br>, S = 0.1880 k<br>0.720<br>1,118.04 psi<br>1,552.50 psi<br>+D+S                                                         | Fc - Perp<br>dded to loads<br>@ 5.0 ft<br>1<br>at 2.500 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 625.0 psi                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wood Grad<br>180.0 psi<br>575.0 psi<br>4x4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ebend- xx<br>Eminbend - xx                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 580.0 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>4x4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.210 pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uglasFir-Larch<br>900.0 psi<br>900.0 psi<br>alculated and ad<br>, S = 0.1880 k<br>1,118.04 psi<br>1,552.50 psi<br>+D+S<br>0,159 :<br>32.92 psi<br>207.00 psi                            | Fc - Perp<br>dded to loads<br>@ 5.0 ft<br>1<br>at 2.500 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 625.0 psi                                                                                                                                                                                                                                                                                                                                                               | Ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wood Grad<br>180.0 psi<br>575.0 psi<br>4x4<br>2.50 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ebend- xx<br>Eminbend - xx                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 580.0 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.210 pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uglasFir-Larch<br>900.0 psi<br>900.0 psi<br>alculated and ad<br>, S = 0.1880 k<br>0.720 ;<br>1,118.04 psi<br>1,552.50 psi<br>+D+S<br>0.159 ;<br>32.92 psi<br>207.00 psi<br>+D+S<br>D Lr | Fc - Perp<br>dded to loads<br>@ 5.0  ft<br>1<br>at 2.500 ft<br>1<br>at 2.500 ft<br>$\frac{1}{at}$<br>$\frac{5.000 \text{ ft}}{2.500 \text{ ft}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 625.0 psi                                                                                                                                                                                                                                                                                                                                                               | Ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wood Grad<br>180.0 psi<br>575.0 psi<br>4x4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ebend- xx<br>Eminbend - xx                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 580.0 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4x4<br>.50 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.210 pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uglasFir-Larch<br>900.0 psi<br>900.0 psi<br>alculated and ad<br>, S = 0.1880 k<br>1,118.04 psi<br>1,552.50 psi<br>+D+S<br>0.159 :<br>32.92 psi<br>207.00 psi<br>+D+S<br>D ⊥r            | Fc - Perp<br>dded to loads<br>@ 5.0 ft<br>1<br>at 2.500 ft<br>1<br>at 2.500 ft<br><u>L</u> <u>S</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 625.0 psi<br>in Span # 1<br>in Span # 1                                                                                                                                                                                                                                                                                                                                 | Ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wood Grad<br>180.0 psi<br>575.0 psi<br>4x4<br>2.50 f<br>ax Deflections<br>Transient Do<br>Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ebend- xx<br>Eminbend - xx                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 580.0 ksi<br>2<br>in Total Down<br>Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4x4<br>.50 ft<br>ward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250<br>+D+S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| uglasFir-Larch<br>900.0 psi<br>900.0 psi<br>alculated and ad<br>, S = 0.1880 k<br>0.720 ;<br>1,118.04 psi<br>1,552.50 psi<br>+D+S<br>0.159 ;<br>32.92 psi<br>207.00 psi<br>+D+S<br>D Lr | Fc - Perp<br>dded to loads<br>@ 5.0  ft<br>1<br>at 2.500 ft<br>1<br>at 2.500 ft<br>$\frac{1}{at}$<br>$\frac{5.000 \text{ ft}}{2.500 \text{ ft}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 625.0 psi<br>in Span # 1<br>in Span # 1                                                                                                                                                                                                                                                                                                                                 | Ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wood Grad<br>180.0 psi<br>575.0 psi<br>4x4<br>2.50 f<br>ax Deflections<br>Transient Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ebend- xx<br>Eminbend - xx                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 580.0 ksi<br>2<br>in Total Down<br>Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4x4<br>.50 ft<br>ward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.238 in<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                         | 6, Sawn, Ful<br>ng Allowable Si<br>uglasFir-Larch<br>900.0 psi<br>900.0 psi<br>150, S = 0.0375<br>0.340<br>416.53 psi<br>1,224.23 psi<br>+D+S<br>0,142:<br>29.40 psi<br>207.00 psi<br>+D+S<br>D<br>Con<br>207.00 psi<br>1,224.23 psi<br>+D+S<br>0,142:<br>29.40 psi<br>207.00 psi<br>1,224.23 psi<br>1,224.23 psi<br>207.00 psi<br>1,224.23 psi<br>207.00 psi<br>1,224.23 psi<br>207.00 psi<br>207.00 psi<br>1,224.23 psi<br>207.00 psi<br>1,224.23 psi<br>1,224.23 psi<br>207.00 psi<br>1,224.23 psi<br>1,224.23 psi<br>1,224.23 psi<br>1,224.23 psi<br>1,224.23 psi<br>207.00 psi<br>1,224.23 psi<br>1,225.25 | 6, Sawn, Fully Unbrace         ng Allowable Stress Design         uglasFir-Larch         900.0 psi       Fc - Prll         900.0 psi       Fc - Perp         150, S = 0.03750 k/ft, Trib=         416.53 psi       at 3.500 ft         1,224.23 psi         +D+S         0.142:1         29.40 psi         207.00 psi         +D+S         0.19         0.08       0.19 | 6, Sawn, Fully Unbraced         ng Allowable Stress Design with IBC 2018         uglasFir-Larch         900.0 psi       Fc - Prll         1,350.0 psi         900.0 psi       Fc - Perp         6, Sawn, Fully Unbraced         900.0 psi       Fc - Perp         900.0 psi       at 3.500 ft in Span #2         1,224.23 psi       +D+S         0.142:1       29.40 psi at 6.580 ft in Span #2         207.00 psi       +D+S         90.08       0.19         90.08       0.19 | 6, Sawn, Fully Unbraced         ng Allowable Stress Design with IBC 2018 Load CombuglasFir-Larch         900.0 psi       Fc - Prll       1,350.0 psi       Fv         900.0 psi       Fc - Perp       625.0 psi       Ft         150, S = 0.03750 k/ft, Trib= 1.0 ft         416.53 psi       at       3.500 ft in Span # 2         1,224.23 psi       +D+S       0.142 : 1         29.40 psi       at       6.580 ft in Span # 2         207.00 psi       +D+S       M         0.142 : 1       207.00 psi       +D         207.00 psi       at       6.580 ft in Span # 2         0.142 : 1       207.00 psi       +D+S         0.08       0.19       M         Dord       0.19       M         Dord       0.19       M         Dord       B. Support Beam for Porch Roof         4, Sawn, Fully Unbraced       Sawn, Fully Unbraced | CalcCalc6, Sawn, Fully Unbracedng Allowable Stress Design with IBC 2018 Load Combinations, MajouglasFir-LarchWood Grad900.0 psiFc - PrII1,350.0 psiFv180.0 psi900.0 psiFc - Perp625.0 psiFt575.0 psi150, S = 0.03750 k/ft, Trib= 1.0 ft1.0 ft1.224.23 psi2x6+D+S0.142:12.240 psi at 6.580 ft in Span # 21.50 ft207.00 psi+D+SMax DeflectionsDLrLSWEHTransient Do0.080.19Transient Do0.080.19Transient UpRatioQn :B. Support Beam for Porch RoofCalc4, Sawn, Fully UnbracedCalc | Calculations per ND6, Sawn, Fully Unbraced<br>ing Allowable Stress Design with IBC 2018 Load Combinations, Major Axis Bending<br>Wood Grade : No.2<br>900.0 psi900.0 psiFc - PrII1,350.0 psiFv180.0 psiEbend- xx900.0 psiFc - Perp625.0 psiFt575.0 psiEminbend - xx150, S = 0.03750 k/ft, Trib= 1.0 ft $D(0.0150)$ $D(0.0150)$ 416.53 psiat3.500 ft in Span # 2 $D(0.0150)$ 416.53 psiat3.500 ft in Span # 2 $D(0.0150)$ 416.53 psiat3.500 ft in Span # 2 $D(0.0150)$ 410.53 psiat6.580 ft in Span # 2 $D(0.0150)$ 50.080.19EHTransient Downward 0.04850.080.19LC: S OnlyTransient Upward -0.02960.70.19LC: S Only124050.80.19LC: S Only50.9Transient Upward -0.029124050.9Calculations per ND | Calculations per NDS 2018, IBC 2018Galculations per NDS 2018, IBC 2018Calculations per NDS 2018, IBC 2018Model Combinations, Major Axis Bending<br>Wood Grade : No.2Wood Grade : No.2900.0 psiFc - Pril1,350.0 psiFv180.0 psiEbend-xx1,600.0 ksi900.0 psiFc - Perp625.0 psiFt575.0 psiEminbend - xx580.0 ksi150, S = 0.03750 k/ft, Trib= 1.0 ft $D(0.0150) S(0.03750)$ $D(0.0150) S(0.03750)$ $D(0.0152) S(0.03750)$ 1224.23 psi $+D+S$ $D(0.142: 1)$ $2x6$ $2x6$ 207.00 psi $+D+S$ $D(0.142: 1)$ $2x6$ $1.50$ ft207.00 psi $+D+S$ $D(0.19)$ $D(0.0150) S(0.03750)$ $D_{017}$ $0.19$ $D(0.19)$ $D(0.0150) S(0.03750)$ $D_{019}$ $D(0.0150) S(0.03750)$ $D(0.0150) S(0.017$ | Calculations per NDS 2018, IBC 2018, CBC 206, Sawn, Fully Unbraceding Allowable Stress Design with IBC 2018 Load Combinations, Major Axis Bending<br>Wood Grade : No.2y00.0 psiFc - PrII1,350.0 psiFv180.0 psiEbend-xx1,600.0 ksiDensityy00.0 psiFc - Perp625.0 psiFt575.0 psiEminbend - xx580.0 ksiDensityy00.0 psiFc - Perp625.0 psiFt575.0 psiEminbend - xx580.0 ksiDensityy00.142 : 10.340 : 112x62x62x6y1224.23 psi+D+S0.142 : 129.40 psi at6.580 ft in Span # 22x61.50 ft7.0 fty00.0 psiLrLSWEHMax Deflections<br>Transient Downward0.048 in<br>RatioTotal Downward0.070.190.19LC: S OnlyLCLC: S OnlyLCy00.80.19LC: S OnlyLCC: S OnlyLCy00.080.19LC: S OnlyLCLC: S OnlyLCy00.080.19 <td< td=""></td<> |

| Multiple Simple Beam                                                                                              | <u> </u>                                                                  | IYERS EN             | GINEERING                                                                                                | Project File: 3419 7<br>(c) ENERC      | ALC INC 1983-2022                                                                                              |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| escription :<br>Vood Beam Design : 13. Be                                                                         | am in Crawl East of                                                       | Grid 3               | Calculations per l                                                                                       |                                        | 2019 ASCE 7-1                                                                                                  |
| BEAM Size : 5.5x10.5, GLB, Fu                                                                                     | Illy Unbraced                                                             |                      |                                                                                                          |                                        |                                                                                                                |
| Wood Species : DF/DF<br>Fb - Tension 2,400.0 psi F                                                                | ss Design with IBC 2018  <br>Fc - Prll 1,650.0 psi<br>Fc - Perp 650.0 psi | Load Col<br>Fv<br>Ft | nbinations, Major Axis Bending<br>Wood Grade : 24F-V4<br>265.0 psi Ebend- xx<br>1,100.0 psi Eminbend - > | 1,800.0 ksi Dens                       | sity 31.210 pcf                                                                                                |
| A <u>pplied Loads</u><br>Unif Load: D = 0.30, L = 0.80 k/ft, Tri<br>1Point: D = 1.780, L = 4.730 k @ 0.5          |                                                                           |                      |                                                                                                          |                                        |                                                                                                                |
| Design Summary                                                                                                    | ſ                                                                         |                      | 7,111 P 10 10.                                                                                           |                                        |                                                                                                                |
| Max fb/Fb Ratio = 0.640 · 1<br>fb : Actual : 1,522.76 psi at<br>Fb : Allowable : 2,378.95 psi<br>Load Comb : +D+L | 4.170 ft in Span # 1                                                      |                      |                                                                                                          | <u>30) L(0.80)</u>                     |                                                                                                                |
| Max fv/FvRatio = 0.427 : 1<br>fv : Actual : 113.11 psi at<br>Fv : Allowable : 265.00 psi<br>Load Comb : +D+L      | 8.130 ft in Span # 1                                                      |                      | A1176                                                                                                    | 5x10.5<br>9.0 ft                       | i                                                                                                              |
| Max Reactions (k) <u>L</u> r <u>L</u><br>Left Support 3.03 8.07<br>Right Support 1.45 3.86                        |                                                                           | Н                    | Transient Downward 0.14                                                                                  | 46 in Total Downward<br>38 Ratio<br>Iv | 0.201 in<br>537<br>LC: +D+L                                                                                    |
|                                                                                                                   |                                                                           |                      | Transient Upward 0.00<br>Ratio 999                                                                       | 0 in Total Upward                      | 0.000 in<br>9999<br>LC:                                                                                        |
| Vood Beam Design : 14. Ma                                                                                         | in Floor Deck Beam                                                        |                      | <b>_</b>                                                                                                 |                                        |                                                                                                                |
| BEAM Size : 6x12, Sawn, Fully                                                                                     | Unbraced                                                                  |                      | Calculations per l                                                                                       | NDS 2018, IBC 2018, CBC                | 2019, ASCE 7-                                                                                                  |
|                                                                                                                   | s Design with IBC 2018 I                                                  | Load Cor             | nbinations, Major Axis Bending<br>Wood Grade : No.1                                                      |                                        |                                                                                                                |
| Fb - Tension 1050 psi F                                                                                           | Fc - Prll 750 psi<br>Fc - Perp 405 psi                                    | Fv<br>Ft             | 140 psi Ebend- xx<br>525 psi Eminbend - >                                                                | 1300 ksi Dens<br>x 470 ksi             | sity 26.84 pcf                                                                                                 |
| A <u>pplied Loads</u><br>Unif Load: D = 0.050, L = 0.30 k/ft, Ti                                                  | rib= 1.0 ft                                                               |                      |                                                                                                          |                                        |                                                                                                                |
| Design Summary                                                                                                    | ſ                                                                         |                      | D(0.0                                                                                                    | 50) L(0.30)                            |                                                                                                                |
|                                                                                                                   | 6.250 ft in Span # 1                                                      |                      |                                                                                                          |                                        |                                                                                                                |
| Fb : Allowable : 832.28 psi<br>Load Comb : +D+L                                                                   |                                                                           | 2                    |                                                                                                          | 6x12                                   | , and the second se |
| Max fv/FvRatio = 0.395 : 1<br>fv : Actual : 44.27 psi at<br>Fv : Allowable : 112.00 psi                           | 11.583 ft_in Span # 1                                                     | <u> </u>             | 1                                                                                                        | 2.50 ft                                |                                                                                                                |
| Load Comb : +D+L                                                                                                  | <u>s w e</u>                                                              | H                    | Max Deflections<br>Transient Downward 0.18                                                               |                                        |                                                                                                                |
| Left Support 0.31 1.88                                                                                            | 3                                                                         |                      | Ratio 82                                                                                                 |                                        | 703                                                                                                            |
|                                                                                                                   | 3                                                                         |                      | Ratio 82<br>LC: L On<br>Transient Upward 0.00<br>Ratio 999                                               | ly<br>10 in Total Upward               | LC: +D+L<br>0.000 in<br>9999                                                                                   |

# Cantilevered Retaining Wall

LIC# : KW-06015659, Build:20.22.12.28 DESCRIPTION: 8ft Stem MYERS ENGINEERING

Project File: 3419 72nd PL SE.ec6

(c) ENERCALC INC 1983-2022

# DESCRIPTION: OILS

# Code Reference:

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

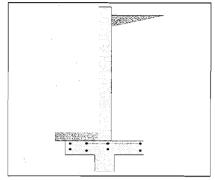
# Criteria

Retained Height=7.50 ftWall height above soil=0.50 ftSlope Behind Wall=0.00Height of Soil over Toe=6.00 inWater height over heel=0.0 ft

# Surcharge Loads

| Surcharge Over Heel = 0.0 psf<br>Used To Resist Sliding & Overturning |
|-----------------------------------------------------------------------|
| Surcharge Over Toe = 0.0 psf                                          |
| Used for Sliding & Overturning                                        |
| Avial Load Applied to Stem                                            |

#### Axial Load Applied to Stem


| Axial Dead Load         | = | 200.0 lbs |
|-------------------------|---|-----------|
| Axial Live Load         | = | 0.0 lbs   |
| Axial Load Eccentricity | = | 0.0 in    |

| =<br>/letho<br>= |        | psf<br>psf/ft                   |
|------------------|--------|---------------------------------|
| =                |        | psf/ft                          |
|                  |        |                                 |
| =                |        |                                 |
| =                | 300.0  | psf/ft                          |
| =                | 125.00 | pcf                             |
| =                | 125.00 | pcf                             |
| =                | 0.350  |                                 |
| =                | 12.00  | in                              |
|                  | =      | = 125.00<br>= 125.00<br>= 0.350 |

Soil Data

# Lateral Load Applied to Stem

| Lateral Load<br>Height to Top<br>Height to Bottom<br>Load Type |                | 0.0 #/ft<br>0.00 ft<br>0.00 ft<br>Wind (W) |
|----------------------------------------------------------------|----------------|--------------------------------------------|
| Load Type                                                      | _              | (Service Level)                            |
| Wind on Exposed Stem<br>(Strength Level)                       | <sup>1</sup> = | 0.0 psf                                    |



# **Adjacent Footing Load**

| Adjacent Footing Load                    | = | 0.0 lbs        |
|------------------------------------------|---|----------------|
| Footing Width                            | = | 0.00 ft        |
| Eccentricity                             | = | 0.00 in        |
| Wall to Ftg CL Dist                      | = | 0.00 ft        |
| Footing Type                             |   | Spread Footing |
| Base Above/Below Soil<br>at Back of Wall | = | 0.0 ft         |
| Poisson's Ratio                          | = | 0.300          |

# Cantilevered Retaining Wall LIC# : KW-06015659, Build:20.22.12.28

# MYERS ENGINEERING

# Project File: 3419 72nd PL SE.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: 8ft Stem

| Design | Summary |
|--------|---------|
|        |         |

| Wall Stability Ratios                                                                         |     |      |       |                      |      |    |
|-----------------------------------------------------------------------------------------------|-----|------|-------|----------------------|------|----|
| Overturning                                                                                   | =   |      |       | 2.47                 | Oł   | <  |
| Sliding                                                                                       | =   |      |       | 1.50                 | ) Öł | Ś  |
| Global Stability                                                                              | =   |      |       | 1.75                 |      |    |
| Total Bearing Load                                                                            | =   |      | 3     | 3.317                | lbs  |    |
| resultant ecc.                                                                                | =   |      |       | 6.06                 | in   |    |
| Eccentricity within                                                                           | n m | nido | lle t | hird                 |      |    |
| Soil Pressure @ Toe                                                                           | Ξ   |      | 1     | ,457                 | psf  | OK |
| Soil Pressure @ Heel                                                                          | =   |      |       | 201                  | psf  | ОК |
| Allowable                                                                                     | =   |      | 1     | ,500                 | psf  |    |
| Soil Pressure Less                                                                            | Th  | an / |       |                      |      |    |
| ACI Factored @ Toe                                                                            | =   |      | 2     | 2,040                | psf  |    |
| ACI Factored @ Heel                                                                           | =   |      |       | 282                  |      |    |
| Footing Shear @ Toe                                                                           | =   |      |       | 22.2                 | psi  | ок |
| Footing Shear @ Heel                                                                          | =   |      |       | 11.6                 | psi  | OK |
| Allowable                                                                                     | =   |      |       | 75.0                 | -    |    |
| Sliding Calcs<br>Lateral Sliding Force<br>less 100% Passive Force<br>less 100% Friction Force |     | -    | 6     | 15.3<br>66.7<br>60.8 | lbs  |    |
| Added Force Reg'd                                                                             | =   |      |       | 0.0                  | lbs  | OK |
| for 1.5 Stability                                                                             | =   |      |       | 0.0                  | lbs  | ок |
|                                                                                               |     |      |       |                      |      |    |

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

| Load Factors<br>Building Code |       |
|-------------------------------|-------|
| Dead Load                     | 1.200 |
| Live Load                     | 1.600 |
| Earth, H                      | 1.600 |
| Wind, W                       | 1.600 |
| Seismic, E                    | 1.000 |

| Stem Construction        |        | 2nd             | Bottom          |    |
|--------------------------|--------|-----------------|-----------------|----|
| Design Height Above Ftg  |        | Stem OK<br>2.50 | Stem OK<br>0.00 |    |
| Wall Material Above "Ht" |        | Concrete        | Concrete        |    |
| Design Method            | =      | SD              | SD              | SD |
| Thickness                | =      | 8.00            | 8.00            |    |
| Rebar Size               | =      | # 4             | # 4             |    |
| Rebar Spacing            | =      | 12.00           | 8.00            |    |
| Rebar Placed at          | =      | 6 in            | 6 in            |    |
| Design Data              |        |                 |                 |    |
| fb/FB + fa/Fa            | =      | 0.224           | 0.516           |    |
| Total Force @ Section    |        |                 |                 |    |
| Service Level            | lbs =  |                 |                 |    |
| Strength Level           | lbs =  | 700.0           | 1,575.0         |    |
| MomentActual             |        |                 |                 |    |
| Service Level            | ft-#=  |                 |                 |    |
| Strength Level           | ft-# = | 1,166.7         | 3,937.5         |    |
| MomentAllowable          | ft-# = | 5,187.6         | 7,622.1         |    |
| ShearActual              |        |                 |                 |    |
| Service Level            | psi =  |                 |                 |    |
| Strength Level           | psi =  | 9.7             | 21.9            |    |
| ShearAllowable           | psi =  | 75.0            | 75.0            |    |
| Anet (Masonry)           | in2 =  |                 |                 |    |
| Wall Weight              | psf=   | 100.0           | 100.0           |    |
| Rebar Depth 'd'          | in =   | 6.00            | 6.00            |    |
|                          |        | 0.00            | 0.00            |    |
| Masonry Data ———         |        |                 |                 |    |
| fm                       | psi =  |                 |                 |    |
| Fs                       | psi =  |                 |                 |    |
| Solid Grouting           | =      |                 |                 |    |
| Modular Ratio 'n'        | ÷      |                 |                 |    |
| Equiv. Solid Thick.      | =      |                 |                 |    |
| Masonry Block Type       | =      |                 |                 |    |
| Masonry Design Method    | =      | ASD             |                 |    |
| Concrete Data            |        |                 | 0.500.5         |    |
| fc                       | psi =  | 2,500.0         | 2,500.0         |    |
| Fy                       | psi =  | 60,000.0        | 60,000.0        |    |

# Cantilevered Retaining Wall

# LIC# : KW-06015659, Build:20.22.12.28 DESCRIPTION: 8ft Stem

MYERS ENGINEERING

Project File: 3419 72nd PL SE.ec6

(c) ENERCALC INC 1983-2022

#### **Concrete Stem Rebar Area Details** 2nd Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) : 0.0456 in2/ft (4/3) \* As : 0.0608 in2/ft Min Stem T&S Reinf Area 1.056 in2 200bd/fy: 200(12)(6)/60000: 0.24 in2/ft Min Stem T&S Reinf Area per ft of stem Height : 0.192 in2/ft 0.0018bh : 0.0018(12)(8) : 0.1728 in2/ft Horizontal Reinforcing Options : \_\_\_\_\_\_ One layer of : Two layers of : Required Area : 0.1728 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area : 0.2 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area : 0.8128 in2/ft #6@ 27.50 in #6@ 55.00 in Bottom Stem Vertical Reinforcing Horizontal Reinforcing As (based on applied moment) : 0.154 in2/ft (4/3) \* As : 0.2054 in2/ft Min Stem T&S Reinf Area 0.480 in2 200bd/fy: 200(12)(6)/60000: 0.24 in2/ft Min Stem T&S Reinf Area per ft of stem Height : 0.192 in2/ft 0.0018bh : 0.0018(12)(8) : 0.1728 in2/ft Horizontal Reinforcing Options : \_\_\_\_\_\_\_ Two layers of : One layer of : Required Area : 0.2054 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area : 0.3 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area : 0.8128 in2/ft #6@ 27.50 in #6@ 55.00 in **Footing Data** Footing Design Results 1.67 ft Toe Width = Toe Heel Heel Width 2.33 = Factored Pressure 2.040 = 282 psf **Total Footing Width** = 4.00 2,494 Mu': Upward 731 ft-# = Mu': Downward = 313 1,771 ft-# Footing Thickness = 10.00 in Mu: Design = 2,182 OK 1,040 ft-# OK Key Width 12.00 in = phiMn = 6,376 7,358 ft-# Key Depth 12.00 in = Actual 1-Way Shear 22.25 = 11.61 psi Key Distance from Toe 1.50 ft = Allow 1-Way Shear 75.00 = 75.00 psi 60,000 psi Toe Reinforcing fc = 2,500 psi = #4@11.00 in Fy =Footing Concrete Density 150.00 pcf Heel Reinforcing = # 4 @ 11.00 in Key Reinforcing Min. As % 0.0018 None Spec'd Cover @ Top 2.00 @ Btm .= 3.00 in Footing Torsion, Tu 0.00 ft-lbs Footing Allow. Torsion, phi Tu = 0.00 ft-lbs

If torsion exceeds allowable, provide

supplemental design for footing torsion.

### Other Acceptable Sizes & Spacings

Toe: #4@ 11.11 in, #5@ 17.22 in, #6@ 24.44 in, #7@ 33.33 in, #8@ 43.88 in, #9@ 55.55 in, #10@ 70.55 in

Heel: #4@ 11.11 in, #5@ 17.22 in, #6@ 24.44 in, #7@ 33.33 in, #8@ 43.88 in, #9@ 55.55 in, #10@ 70.55 in

Key: phiMn = phi'5'lambda'sqrt(fc)'Sm

| Min footing T&S reinf Area          | 0.86 in2                          |
|-------------------------------------|-----------------------------------|
| Min footing T&S reinf Area per foot | 0.22 in2 /ft                      |
| If one layer of horizontal bars:    | If two layers of horizontal bars: |
| #4@ 11.11 in                        | #4@ 22.22 in                      |
| #5@ 17.22 in                        | #5@ 34.44 in                      |
| #6@ 24.44 in                        | #6@ 48.89 in                      |

# Cantilevered Retaining Wall

MYERS ENGINEERING

(c) ENERCALC INC 1983-2022

Project File: 3419 72nd PL SE.ec6

LIC# : KW-06015659, Build:20.22.12.28 DESCRIPTION: 8ft Stem

# Summary of Overturning & Resisting Forces & Moments

|                                                          | 0\           | <b>ERTURNING</b> |                |                                                               | RE           | SISTING        |                    |
|----------------------------------------------------------|--------------|------------------|----------------|---------------------------------------------------------------|--------------|----------------|--------------------|
| ltem                                                     | Force<br>lbs | Distance<br>ft   | Moment<br>ft-# |                                                               | Force<br>Ibs | Distance<br>ft | Moment<br>ft-#     |
| HL Act Pres (ab water tbl)<br>HL Act Pres (be water tbl) | 1,215.3      | 2.78             | 3,375.8        | Soil Over HL (ab. water tbl)<br>Soil Over HL (bel. water tbl) | 1,562.5      | 3.17<br>3.17   | 4,947.9<br>4,947.9 |
| lydrostatic Force                                        |              |                  |                | Water Table                                                   |              |                |                    |
| Buoyant Force =                                          |              |                  |                | Sloped Soil Over Heel =                                       |              |                |                    |
| Surcharge over Heel =                                    |              |                  |                | Surcharge Over Heel =                                         |              |                |                    |
| Surcharge Over Toe =                                     |              |                  |                | Adjacent Footing Load =                                       |              |                |                    |
| Adjacent Footing Load =                                  |              |                  |                | Axial Dead Load on Stem =                                     | 200.0        | 2.00           | 400.0              |
| Added Lateral Load =                                     |              |                  |                | * Axial Live Load on Stem =                                   |              |                |                    |
| .oad @ Stem Above Soil =                                 |              |                  |                | Soil Over Toe =                                               | 104.2        | 0.83           | 86.8               |
| =                                                        |              |                  |                | Surcharge Over Toe =                                          |              |                |                    |
| _                                                        |              |                  |                | Stem Weight(s) =                                              | 800.0        | 2.00           | 1,600.0            |
|                                                          |              |                  |                | Earth @ Stem Transitions =                                    |              |                |                    |
| Total =                                                  | 1,215.3      | 0.T.M. =         | 3,375.8        | Footing Weight =                                              | 500.0        | 2.00           | 1,000.0            |
|                                                          |              |                  |                | Key Weight =                                                  | 150.0        | 2.00           | 300.0              |
| Resisting/Overturning Ra                                 | tio          | =                | 2.47           | Vert. Component =                                             |              |                |                    |
| Vertical Loads used for Se                               | oil Pressure | = 3,316.7        | 7 Ibs          | Total =                                                       | 3.316.7      |                | 8,334.7            |

resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

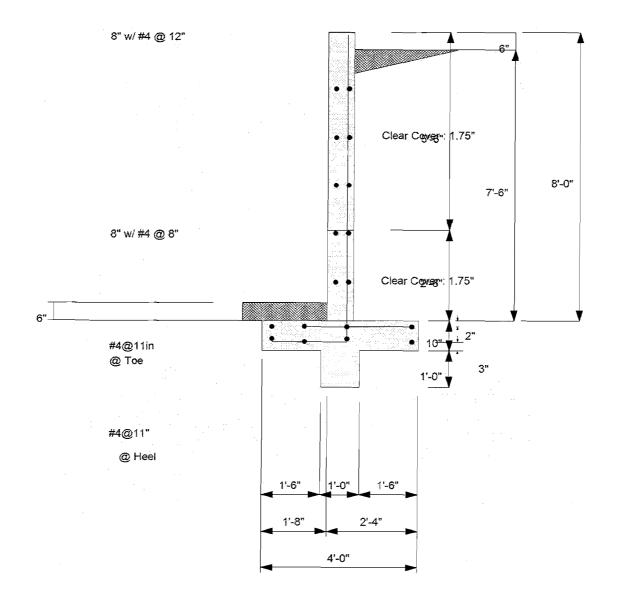
Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

#### Tilt

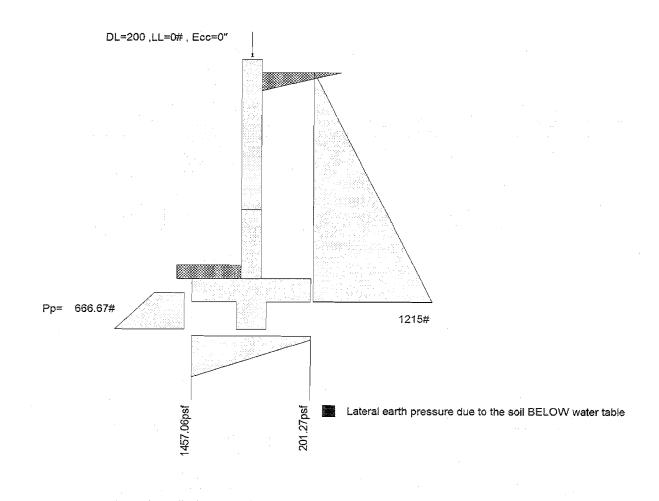
# Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus                     | 250.0 | pci |
|--------------------------------------------------|-------|-----|
| Horizontal Defl @ Top of Wall (approximate only) | 0.081 | in  |
|                                                  |       |     |


The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,

because the wall would then tend to rotate into the retained soil.


| Cantilevered           | Retaining Wall                                                        |                            | Project File: 3419 72nd PL SE | ec6    |
|------------------------|-----------------------------------------------------------------------|----------------------------|-------------------------------|--------|
| LIC# : KW-06015659, Bi |                                                                       | MYERS ENGINEERING          | (c) ENERCALC INC 1983         | 3-2022 |
| Rebar Lap & Eml        | bedment Lengths Inform                                                | nation                     |                               |        |
| Stem Design Segme      | <u>nt: 2nd</u>                                                        |                            |                               |        |
| Stem Design Height:    | 2.50 ft above top of footing                                          |                            |                               |        |
| Lap Splice length for  | #4 bar specified in this stem de                                      | sign segment (25.4.2.3a) = | 18.72 in                      |        |
| Development length     | for #4 bar specified in this stem                                     | design segment =           | 14.40 in                      |        |
| <br>Stem Design Segme  |                                                                       |                            |                               |        |
| Stem Design Height:    |                                                                       |                            |                               |        |
|                        |                                                                       |                            |                               |        |
| Lap Splice length for  | #4 bar specified in this stem de                                      | sign segment (25.4.2.3a) = | 18.72 in                      |        |
| • • •                  | #4 bar specified in this stem de<br>for #4 bar specified in this stem |                            | 18.72 in<br>14.40 in          |        |
| Development length t   | for #4 bar specified in this stem                                     |                            |                               |        |
| Development length t   | for #4 bar specified in this stem                                     | design segment =           | 14.40 in                      |        |

9

| Cantilevered Retaining Wall           |                   | Project File: 3419 72nd PL SE.ec6 |
|---------------------------------------|-------------------|-----------------------------------|
| LIC# : KW-06015659, Build:20.22.12.28 | MYERS ENGINEERING | (c) ENÉRCALC INC 1983-2022        |
| DESCRIPTION: 8ft Stem                 |                   |                                   |



# Cantilevered Retaining Wall Project File: 3419 72nd PL SE.ec6 LIC# : KW-06015659, Build:20.22.12.28 MYERS ENGINEERING (c) ENERCALC INC 1983-2022 DESCRIPTION: 8ft Stem (c) ENERCALC INC 1983-2022



# Cantilevered Retaining Wall LIC# : KW-06015659, Build:20.22.12.28

# MYERS ENGINEERING

Project File: 3419 72nd PL SE ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: 6ft Stem

# Code Reference:

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

# Criteria

# Soil Data

| Criteria               |                                      | Soil Data                                                                                                                              |                                                                              |                                                                               |                                                  |
|------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------|
| Wall height above soil | = 5.50 ft<br>= 0.50 ft<br>= 0.00     | Allow Soil Bearing<br>Equivalent Fluid Pressur<br>Active Heel Pressure                                                                 | = 1,500.0 psf<br>e Method<br>= 35.0 psf/ft                                   |                                                                               |                                                  |
|                        | = 6.00 in<br>= 0.0 ft                | Passive Pressure<br>Soil Density, Heel<br>Soil Density, Toe<br>Footing  Soil Friction<br>Soil height to ignore<br>for passive pressure | =<br>= 300.0 psf/ft<br>= 125.00 pcf<br>= 125.00 pcf<br>= 0.350<br>= 12.00 in |                                                                               |                                                  |
| Surcharge Loads        |                                      | Lateral Load Appli                                                                                                                     | ed to Stem                                                                   | Adjacent Footing I                                                            | Load                                             |
| Used To Resist Sliding | = 0.0 psf                            | Lateral Load<br>Height to Top<br>Height to Bottom                                                                                      | = 0.0 #/ft<br>= 0.00 ft<br>= 0.00 ft                                         | Adjacent Footing Load<br>Footing Width<br>Eccentricity<br>Wall to Ftg CL Dist | = 0.0 lbs<br>= 0.00 ft<br>= 0.00 in<br>= 0.00 ft |
| Axial Load Applied     | to Stem                              | Load Type                                                                                                                              | = Wind (W)<br>(Service Level)                                                | Footing Type                                                                  | Spread Footing                                   |
| Axial Live Load        | = 200.0 lbs<br>= 0.0 lbs<br>= 0.0 in | Wind on Exposed Stem<br>(Strength Level)                                                                                               | = 0.0 psf                                                                    | Base Above/Below Soil<br>at Back of Wall<br>Poisson's Ratio                   | = 0.0 ft<br>= 0.300                              |

# Cantilevered Retaining Wall LIC# : KW-06015659, Build:20.22.12.28

# MYERS ENGINEERING

# Project File: 3419 72nd PL SE.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: 6ft Stem

| Design | Summary |
|--------|---------|
|--------|---------|

| Wall Stability Ratios    |          |              |
|--------------------------|----------|--------------|
| Overturning              | =        | 2.35 OK      |
| Sliding                  | =        | 1.52 OK      |
| Global Stability         | =        | 2.00         |
| Total Bearing Load       | =        | 2,041 lbs    |
| resultant ecc.           | =        | 5.24 in      |
| Eccentricity within      |          |              |
| Soil Pressure @ Toe      | =        | 1,389 psf OK |
| Soil Pressure @ Heel     | =        | 53 psf OK    |
| Allowable                | =        | 1,500 psf    |
| Soil Pressure Less       | I han Al |              |
| ACI Factored @ Toe       | =        | 1,945 psf    |
| ACI Factored @ Heel      | =        | 74 psf       |
| Footing Shear @ Toe      | =        | 8.5 psi OK   |
| Footing Shear @ Hee      | =        | 6.1 psi OK   |
| Allowable                | =        | 75.0 psi     |
|                          |          |              |
| Sliding Calcs            |          |              |
| Lateral Sliding Force    | =        | 701.9 lbs    |
| less 100% Passive Force  | -        | 354.2 lbs    |
| less 100% Friction Force | = -      | 714.4 lbs    |
| Added Force Reg'd        | =        | 0.0 lbs OK   |
| for 1.5 Stability        | =        | 0.0 lbs OK   |
| ior 1.0 Otability        |          | 0.0 103 010  |

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

| Load Factors |       |
|--------------|-------|
| Dead Load    | 1.200 |
| Live Load    | 1.600 |
| Earth, H     | 1.600 |
| Wind, W      | 1.600 |
| Seismic, E   | 1.000 |

| Stem Construction            |        | 2nd                                    | Bottom          |    |
|------------------------------|--------|----------------------------------------|-----------------|----|
| Design Height Above Ftg      | ft =   | Stern OK<br>2.50                       | Stem OK<br>0.00 |    |
| Wall Material Above "Ht"     | =      | Concrete                               | Concrete        |    |
| Design Method                | =      | SD                                     | SD              | SD |
| Thickness                    | =      | 8.00                                   | 8.00            |    |
| Rebar Size                   | =      | # 4                                    | # 4             |    |
| Rebar Spacing                | =      | 12.00                                  | 10.00           |    |
| Rebar Placed at              | =      | 6 in                                   | 6 in            |    |
| Design Data<br>fb/FB + fa/Fa | =      | 0.048                                  | 0.251           |    |
| Total Force @ Section        | -      | 0.040                                  | 0.201           |    |
| Service Level                | lbs =  |                                        |                 |    |
| Strength Level               | lbs =  | 252.0                                  | 847.0           |    |
| MomentActual                 | 103 ~  | 252.0                                  | 047.0           |    |
| Service Level                | ft-# = |                                        |                 |    |
| Strength Level               | ft-# = | 252.0                                  | 1,552.8         |    |
| MomentAllowable              | ft-# = | 5.187.6                                | 6,174.1         |    |
| ShearActual                  |        | ,                                      |                 |    |
| Service Level                | psi=   |                                        |                 |    |
| Strength Level               | psi =  | 3.5                                    | 11.8            |    |
| ShearAllowable               | psi=   | 75.0                                   | 75.0            |    |
| Anet (Masonry)               | in2 =  |                                        |                 |    |
| Wall Weight                  | psf=   | 100.0                                  | 100.0           |    |
| Rebar Depth 'd'              | in =   | 6.00                                   | 6.00            |    |
| Masonry Data                 |        |                                        |                 |    |
| fm                           | psi =  |                                        |                 |    |
| Fs                           | psi=   |                                        |                 |    |
| Solid Grouting               | p31 =  |                                        |                 |    |
| Modular Ratio 'n'            | =      |                                        |                 |    |
| Equiv. Solid Thick.          | =      |                                        |                 |    |
| Masonry Block Type           | =      |                                        |                 |    |
| Masonry Design Method        | =      | ASD                                    |                 |    |
| Concrete Data                |        | •••••••••••••••••••••••••••••••••••••• |                 |    |
| fc                           | psi =  | 2,500.0                                | 2,500.0         |    |
| Fy                           | psi =  | 60,000.0                               | 60,000.0        |    |

Key: phiMn = phi'5'lambda'sqrt(fc)'Sm

Min footing T&S reinf Area 0.61 in2 Min footing T&S reinf Area per foot 0.22 in2 /ft If one layer of horizontal bars: If two layers of horizontal bars: #4@ 11.11 in #4@ 22.22 in #5@ 17.22 in #5@ 34.44 in #6@ 24.44 in #6@ 48.89 in

Heel: phiMn = phi'5'lambda'sqrt(fc)'Sm

Toe: phiMn = phi'5'lambda'sqrt(fc)'Sm

Other Acceptable Sizes & Spacings

supplemental design for footing torsion.

If torsion exceeds allowable, provide

|           |                | <b>U</b> ,      |
|-----------|----------------|-----------------|
| ==        | One layer of : | Two layers of : |
|           | #4@ 12.50 in   | #4@ 25.00 in    |
|           | #5@ 19.38 in   | #5@ 38.75 in    |
|           | #6@ 27.50 in   | #6@ 55.00 in    |
| Footing D | esign Results  |                 |
|           |                |                 |

Vertical Reinforcing 0.0099 in2/ft 0.0131 in2/ft

=

=

=

=

=

=

=

Fy =

0.24 in2/ft 0.1728 in2/ft

\_\_\_\_\_

0.2 in2/ft

0.1728 in2/ft

0.8128 in2/ft

0.0607 in2/ft

0.1728 in2/ft

\_\_\_\_\_

0.1728 in2/ft

0.8128 in2/ft

0.24 in2/ft

1.08 ft

1.75

2.83

10.00 in

12.00 in

6.00 in

0.92 ft

60,000 psi

150.00 pcf

0.0018

@ Btm .= 3.00 in

0.081 in2/ft

0.24 in2/ft

Vertical Reinforcing

=====

**Cantilevered Retaining Wall** 

**Concrete Stem Rebar Area Details** 2nd Stem As (based on applied moment) : (4/3) \* As : 200bd/fy: 200(12)(6)/60000:

LIC# : KW-06015659, Build:20.22.12.28

**DESCRIPTION:** 6ft Stem

0.0018bh : 0.0018(12)(8) :

As (based on applied moment) :

200bd/fy: 200(12)(6)/60000:

0.0018bh : 0.0018(12)(8) :

Provided Area : Maximum Area :

Bottom Stem

Required Area :

Provided Area :

Maximum Area :

Heel Width

Key Width

Key Depth

Min. As %

Cover @ Top

fc =

Footing Data Toe Width

Total Footing Width

Key Distance from Toe

Footing Concrete Density

2,500 psi

2.00

**Footing Thickness** 

(4/3) \* As :

Required Area :

Project Title: Engineer: Project ID: Project Descr:

Horizontal Reinforcing

Min Stem T&S Reinf Area 0.672 in2 Min Stem T&S Reinf Area per ft of stem Height : 0.192 in2/ft Horizontal Reinforcing Options : Two layers of :

One layer of : #4@ 12.50 in #4@ 25.00 in #5@ 19.38 in #5@ 38.75 in #6@ 55.00 in

#6@ 27.50 in

# Horizontal Reinforcing

Min Stem T&S Reinf Area 0.480 in2 Min Stem T&S Reinf Area per ft of stem Height : 0.192 in2/ft Horizontal Reinforcing Options :

MYERS ENGINEERING

| rooting Desig          |      |             |             |    |
|------------------------|------|-------------|-------------|----|
|                        |      | Toe         | Heel        |    |
| Factored Pressure      | =    | 1,945       | 74 psf      |    |
| Mu' : Upward           | =    | 996         | 184 ft-#    |    |
| Mu' : Downward         | =    | 131         | 572 ft-#    |    |
| Mu: Design             | =    | 864 OK      | 388 ft-#    | ОК |
| phiMn                  | =    | 1,600       | 1,600 ft-#  |    |
| Actual 1-Way Shear     | =    | 8.51        | 6.12 psi    |    |
| Allow 1-Way Shear      | =    | 40.00       | 40.00 psi   |    |
| Toe Reinforcing        | =    | None Spec'd |             |    |
| Heel Reinforcing       | =    | None Spec'd |             |    |
| Key Reinforcing        | =    | None Spec'd |             |    |
| Footing Torsion, Tu    |      | =           | 0.00 ft-lbs |    |
| Footing Allow. Torsion | п, р | ohiTu ≕     | 0.00 ft-lbs |    |

14

Project File: 3419 72nd PL SE.ec6

(c) ENERCALC INC 1983-2022

# Cantilevered Retaining Wall LIC# : KW-06015659, Build:20.22.12.28

MYERS ENGINEERING

Project File: 3419 72nd PL SE.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: 6ft Stem

# Summary of Overturning & Resisting Forces & Moments

|                                                 | 0\            | /ERTURNING     |                |                                              | RE           | SISTING        |                |
|-------------------------------------------------|---------------|----------------|----------------|----------------------------------------------|--------------|----------------|----------------|
| Item                                            | Force<br>lbs  | Distance<br>ft | Moment<br>ft-# |                                              | Force<br>lbs | Distance<br>ft | Moment<br>ft-# |
| HL Act Pres (ab water tbl)                      | 701.9         | 2.11           | 1,481.9        | Soil Over HL (ab. water tbl)                 | 744.8        | 2.29           | 1,704.3        |
| HL Act Pres (be water tbl)<br>Hydrostatic Force |               |                |                | Soil Over HL (bel. water tbl)<br>Water Table |              | 2.29           | 1,704.3        |
|                                                 | =             |                |                | Sloped Soil Over Heel =                      |              |                |                |
|                                                 | =             |                |                | Surcharge Over Heel =                        |              |                |                |
| - · · · -                                       | =             |                |                | Adjacent Footing Load =                      |              |                |                |
| · · · · · · · · · · · · · · · · · · ·           | =             |                |                | Axial Dead Load on Stem =                    | 200.0        | 1.41           | 282.7          |
|                                                 | =             |                |                | * Axial Live Load on Stem =                  |              |                |                |
| _oad @ Stem Above Soil =                        | =             |                |                | Soil Over Toe =                              | 67.5         | 0.54           | 36.5           |
| -                                               | =             |                |                | Surcharge Over Toe =                         |              |                |                |
|                                                 |               |                |                | Stem Weight(s) =                             | 600.0        | 1.41           | 848.0          |
| _                                               |               |                |                | Earth @ Stem Transitions =                   |              |                |                |
| Total :                                         | = 701.9       | O.T.M. =       | 1,481.9        | Footing Weight =                             | 353.8        | 1.42           | 500.6          |
|                                                 |               |                |                | Key Weight =                                 | 75.0         | 1.42           | 106.3          |
| Resisting/Overturning                           | Ratio         | =              | 2.35           | Vert. Component =                            |              |                |                |
| Vertical Loads used for                         | Soil Pressure | = 2,041.0      | ) ibs          | Total =                                      | 2,041.0      | os R.M.=       | 3.478.3        |
|                                                 |               |                |                | * Axial live load NOT included in            |              |                |                |

resistance, but is included for soil pressure calculation.

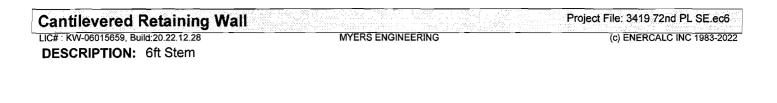
Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

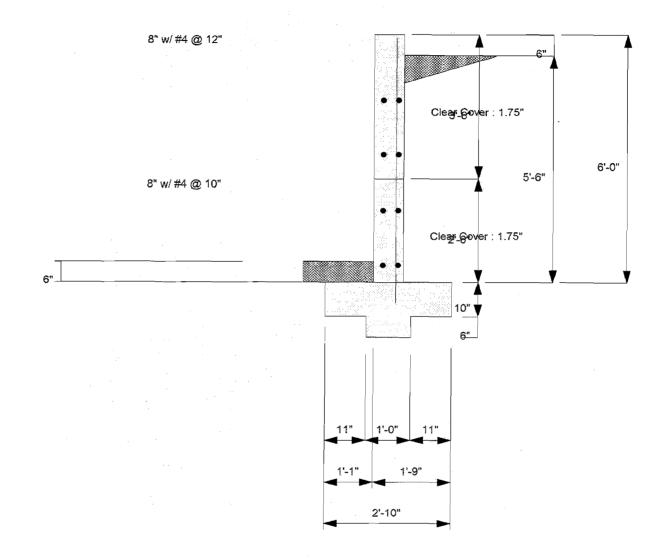
Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

#### Tilt

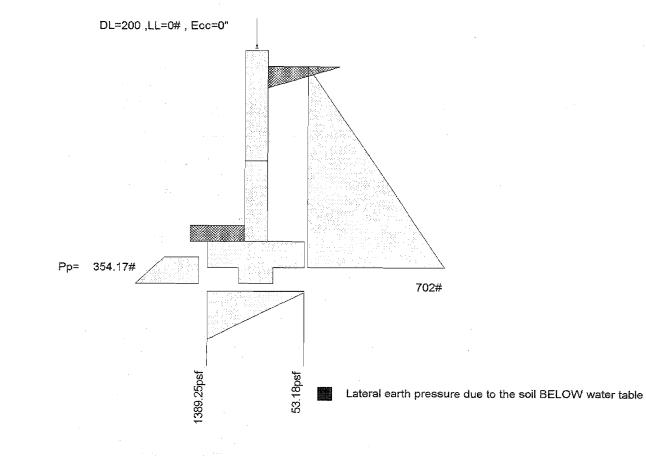
# Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)


| Soil Spring Reaction Modulus                     | 250.0 | рсі |
|--------------------------------------------------|-------|-----|
| Horizontal Defl @ Top of Wall (approximate only) | 0.082 | in  |
|                                                  |       |     |


The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,

because the wall would then tend to rotate into the retained soil.


| Ualitieveleu int                                                          | etaining Wall                                                                                                                             | Project File: 3419 72nd PL SE.ec6 |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| LIC# : KW-06015659, Build:<br>DESCRIPTION: 6                              | 20.22 12.28 MYERS ENGINEERING                                                                                                             | (c) ENERCALC INC 1983-2022        |
| Rebar Lap & Embe                                                          | dment Lengths Information                                                                                                                 |                                   |
| Stem Design Segment:                                                      | <u>2nd</u>                                                                                                                                |                                   |
| Stem Design Height:                                                       | 2.50 ft above top of footing                                                                                                              |                                   |
| Lap Splice length for #4                                                  | bar specified in this stem design segment (25.4.2.3a) =                                                                                   | 18.72 in                          |
| Development length for                                                    | #4 bar specified in this stem design segment =                                                                                            | 14.40 in                          |
|                                                                           |                                                                                                                                           |                                   |
| Stem Design Segment:                                                      |                                                                                                                                           |                                   |
| Stem Design Segment:<br>Stem Design Height:                               | Bottom<br>0.00 ft above top of footing                                                                                                    |                                   |
| Stem Design Height:                                                       |                                                                                                                                           | <br>18.72 in                      |
| Stem Design Height:<br>Lap Splice length for #4                           | 0.00 ft above top of footing                                                                                                              | 18.72 in<br>14.40 in              |
| Stem Design Height:<br>Lap Splice length for #4<br>Development length for | 0.00 ft above top of footing<br>bar specified in this stem design segment (25.4.2.3a) =                                                   |                                   |
| Stem Design Height:<br>Lap Splice length for #4<br>Development length for | 0.00 ft above top of footing<br>bar specified in this stem design segment (25.4.2.3a) =<br>#4 bar specified in this stem design segment = | 14.40 in                          |

•





| Cantilevered Retaining W              | na kana sa na na na kana sa kana na kana na kana na kana na kana na kana na sa s | Project File: 3419 72nd PL SE ec6 |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|
| LIC# : KW-06015659, Build:20.22.12.28 | MYERS ENGINEERING                                                                                              | (c) ENERCALC INC 1983-2022        |
| DESCRIPTION: 6ft Stem                 |                                                                                                                |                                   |



MYERS ENGINEERING

Project Title: Engineer: Project ID: Project Descr:

# Project File: 3419 72nd PL SE.ec6

(c) ENERCALC INC 1983-2022

Cantilevered Retaining Wall LIC# : KW-06015659, Build:20.22.12.28 DESCRIPTION: 4ft Stem

# Code Reference:

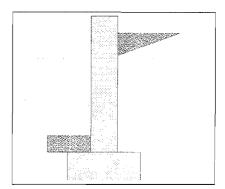
Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

# Criteria

| Retained Height         | = | 3.50 ft |
|-------------------------|---|---------|
| Wall height above soil  | = | 0.50 ft |
| Slope Behind Wall       | = | 0.00    |
| Height of Soil over Toe | = | 6.00 in |
| Water height over heel  | = | 0.0 ft  |

# Surcharge Loads

| Surcharge Over Heel = 0.0 psf<br>Used To Resist Sliding & Overturning |  |  |
|-----------------------------------------------------------------------|--|--|
| Surcharge Over Toe = 0.0                                              |  |  |
| Used for Sliding & Overturning                                        |  |  |
| Axial Load Applied to Stem                                            |  |  |


| Axial Dead Load | =   | 200.0 lbs |
|-----------------|-----|-----------|
| Axial Live Load | . = | 0.0 lbs   |

| Axial Live Load         | = | 0.0 lbs |
|-------------------------|---|---------|
| Axial Load Eccentricity | = | 0.0 in  |

| Soil Data                                     |      |              |
|-----------------------------------------------|------|--------------|
| Allow Soil Bearing                            | =    | 1,500.0 psf  |
| Equivalent Fluid Pressure                     | Meth | hod          |
| Active Heel Pressure                          | =    | 35.0 psf/ft  |
|                                               | =    |              |
| Passive Pressure                              | =    | 300.0 psf/ft |
| Soil Density, Heel                            | =    | 125.00 pcf   |
| Soil Density, Toe                             | =    | 125.00 pcf   |
| Footing  Soil Friction                        | =    | 0.350        |
| Soil height to ignore<br>for passive pressure | =    | 12.00 in     |

# Lateral Load Applied to Stem

| Lateral Load<br>Height to Top<br>Height to Bottom<br>Load Type | = = | 0.0 #/ft<br>0.00 ft<br>0.00 ft<br>Wind (W)<br>(Service Level) |
|----------------------------------------------------------------|-----|---------------------------------------------------------------|
| Wind on Exposed Stem<br>(Strength Level)                       | =   | 0.0 psf                                                       |



# Adjacent Footing Load

| Adjacent Footing Load                    | = | 0.0 lbs        |
|------------------------------------------|---|----------------|
| Footing Width                            | = | 0.00 ft        |
| Eccentricity                             | = | 0.00 in        |
| Wall to Ftg CL Dist                      | = | 0.00 ft        |
| Footing Type                             |   | Spread Footing |
| Base Above/Below Soil<br>at Back of Wall | = | 0.0 ft         |
| Poisson's Ratio                          | = | 0.300          |

# Cantilevered Retaining Wall LIC# : KW-06015659, Build:20.22.12.28

# MYERS ENGINEERING

# Project File: 3419 72nd PL SE.ec6

(c) ENERCALC INC 1983-2022

DESCRIPTION: 4ft Stem

| Design S | Summary |
|----------|---------|
|----------|---------|

| Wall Stability Ratios    |          |              |
|--------------------------|----------|--------------|
| Overturning              | =        | 2.45 OK      |
| Sliding                  | =        | 1.55 OK      |
| Global Stability         | =        | 2.62         |
| Total Bearing Load       | =        | 1,121 lbs    |
| resultant ecc.           | =        | 3.62 in      |
| Eccentricity within      | n middle |              |
| Soil Pressure @ Toe      | =        | 1,215 psf OK |
| Soil Pressure @ Heel     | =        | 8 psf OK     |
| Allowable                | =        | 1,500 psf    |
| Soil Pressure Less       | Than A   | llowable     |
| ACI Factored @ Toe       | =        | 1,701 psf    |
| ACI Factored @ Heel      | =        | 11 psf       |
| Footing Shear @ Toe      | =        | 0.6 psi OK   |
| Footing Shear @ Heel     | =        | 2.4 psi OK   |
| Allowable                | =        | 75.0 psi     |
|                          |          |              |
| Sliding Calcs            |          |              |
| Lateral Sliding Force    | =        | 328.6 lbs    |
| less 100% Passive Force  |          | 116.7 lbs    |
| less 100% Friction Force | ≡ -      | 392.2 lbs    |
| Added Force Reg'd        | =        | 0.0 lbs OK   |
|                          | =        | 0.0 lbs OK   |
| for 1.5 Stability        | -        | NU IDS UK    |

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

| Load Factors<br>Building Code |                    |
|-------------------------------|--------------------|
| Dead Load                     | 1.200              |
| Live Load                     | 1.600              |
| Earth, H                      | 1.600              |
| Wind, W                       | 1.600              |
| Seismic, E                    | 1.000 <sup>.</sup> |

| Stem Construction        | _         | Bottom          |    |    |  |
|--------------------------|-----------|-----------------|----|----|--|
| Design Height Above Ftg  | <br>; ft= | Stem OK<br>0.00 |    |    |  |
| Wall Material Above "Ht" |           | Concrete        |    |    |  |
| Design Method            | =         | SD              | SD | SD |  |
| Thickness                | =         | 8.00            | 00 | 00 |  |
| Rebar Size               | =         | # 4             |    |    |  |
| Rebar Spacing            | =         | 10.00           |    |    |  |
| Rebar Placed at          | =         | 6 in            |    |    |  |
| Design Data              |           |                 |    |    |  |
| fb/FB + fa/Fa            | =         | 0.064           |    |    |  |
| Total Force @ Section    |           |                 |    |    |  |
| Service Level            | lbs =     |                 |    |    |  |
| Strength Level           | lbs =     | 343.0           |    |    |  |
| MomentActual             |           |                 |    |    |  |
| Service Level            | ft-# =    |                 |    |    |  |
| Strength Level           | ft-# =    | 400.2           |    |    |  |
| MomentAllowable          | =         | 6,174.1         |    |    |  |
| ShearActual              |           |                 |    |    |  |
| Service Level            | psi =     |                 |    |    |  |
| Strength Level           | psi =     | 4.8             |    |    |  |
| ShearAllowable           | psi =     | 75.0            |    |    |  |
| Anet (Masonry)           | in2 =     |                 |    |    |  |
| Wall Weight              | psf=      | 100.0           |    |    |  |
| Rebar Depth 'd'          | in =      | 6.00            |    |    |  |
|                          |           |                 |    |    |  |
| Masonry Data<br>fm       | · _       |                 |    |    |  |
| Fs                       | psi =     |                 |    |    |  |
| Solid Grouting           | psi=<br>= |                 |    |    |  |
| - Modular Ratio 'n'      | =         |                 |    |    |  |
| Equiv. Solid Thick.      | =         |                 |    |    |  |
| Masonry Block Type       | =         |                 |    |    |  |
| Masonry Design Method    | =         | ASD             |    |    |  |
| Concrete Data            |           |                 |    |    |  |
| fc                       | psi =     | 2,500.0         |    |    |  |
| Fy                       | psi =     | 60,000.0        |    |    |  |

# Cantilevered Retaining Wall

Vertical Reinforcing

0.0157 in2/ft 0.0209 in2/ft

\_\_\_\_\_\_

0.1728 in2/ft

0.8128 in2/ft

0.24 in2/ft

0.24 in2/ft 0.1728 in2/ft

LIC# : KW-06015659, Build:20.22.12.28 DESCRIPTION: 4ft Stem

## **Concrete Stem Rebar Area Details**

| Bottom Stem                    |
|--------------------------------|
| As (based on applied moment) : |
| (4/3) * As :                   |
| 200bd/fy : 200(12)(6)/60000 :  |
| 0.0018bh : 0.0018(12)(8) :     |
|                                |

Required Area : Provided Area : Maximum Area :

### **Footing Data**

| Toe Width         |         | =        | 0.58 ft      |
|-------------------|---------|----------|--------------|
| Heel Width        |         | =        | 1.25         |
| Total Footing Wid | lth     | =        | 1.83         |
| Footing Thicknes  | s       | =        | 10.00 in     |
| Key Width         |         | =        | 12.00 in     |
| Key Depth         |         | =        | 0.00 in      |
| Key Distance from | n Toe   | =        | 0.50 ft      |
| fc = 2,500        |         | -<br>y = | 60,000 psi   |
| Footing Concrete  | Density | =        | 150.00 pcf   |
| Min. As %         |         | =        | 0.0018       |
| Cover @ Top       | 2.00    | @ B      | tm.= 3.00 in |

# Horizontal Reinforcing

 Min Stem T&S Reinf Area 0.768 in2

 Min Stem T&S Reinf Area per ft of stem Height : 0.192 in2/ft

 Horizontal Reinforcing Options :

 One layer of :
 Two layers of :

 #4@ 12.50 in
 #4@ 25.00 in

 #5@ 19.38 in
 #5@ 38.75 in

 #6@ 27.50 in
 #6@ 55.00 in

Project File: 3419 72nd PL SE.ec6

(c) ENERCALC INC 1983-2022

#### Footing Design Results

MYERS ENGINEERING

|                       |      | Toe         | <u>Heel</u> |    |
|-----------------------|------|-------------|-------------|----|
| Factored Pressure     | =    | 1,701       | 11 psf      |    |
| Mu' : Upward          | =    | 259         | 32 ft-#     |    |
| Mu': Downward         | =    | 38          | 115 ft-#    |    |
| Mu: Design            | =    | 221 OK      | 82 ft-#     | ОK |
| phiMn                 | =    | 1,600       | 1,600 ft-#  |    |
| Actual 1-Way Shear    | =    | 0.62        | 2.40 psi    |    |
| Allow 1-Way Shear     | =    | 40.00       | 40.00 psi   |    |
| Toe Reinforcing       | =    | None Spec'd |             |    |
| Heel Reinforcing      | =    | None Spec'd |             |    |
| Key Reinforcing       | =    | None Spec'd |             |    |
| Footing Torsion, Tu   |      | =           | 0.00 ft-lbs |    |
| Footing Allow. Torsio | n, p | ohiTu =     | 0.00 ft-lbs |    |

# If torsion exceeds allowable, provide supplemental design for footing torsion.

supplemental design for rooting torsion.

# Other Acceptable Sizes & Spacings

Toe: phiMn = phi'5'lambda'sqrt(fc)'Sm

Heel: phiMn = phi'5'lambda'sqrt(fc)'Sm

Key: No key defined

7

Min footing T&S reinf Area0.40in2Min footing T&S reinf Area per foot0.22in2 /tIf one layer of horizontal bars:If two layers of horizontal bars:#4@ 11.11 in#4@ 22.22 in#5@ 17.22 in#5@ 34.44 in#6@ 24.44 in#6@ 48.89 in

# Cantilevered Retaining Wall

MYERS ENGINEERING

Project File: 3419 72nd PL SE.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: 4ft Stem

# Summary of Overturning & Resisting Forces & Moments

|                                                 | C               | VERTURNING     |                |                                              | RE           | SISTING        |                |
|-------------------------------------------------|-----------------|----------------|----------------|----------------------------------------------|--------------|----------------|----------------|
| Item                                            | Force<br>lbs    | Distance<br>ft | Moment<br>ft-# |                                              | Force<br>lbs | Distance<br>ft | Moment<br>ft-# |
| HL Act Pres (ab water tbl)                      | 328.6           | 5 1.44         | 474.7          | Soil Over HL (ab. water tbl)                 | 255.1        | 1.54           | 393.3          |
| HL Act Pres (be water tbl)<br>Hydrostatic Force |                 |                |                | Soil Over HL (bel. water tbl)<br>Water Table |              | 1.54           | 393.3          |
| Buoyant Force                                   | =               |                |                | Sloped Soil Over Hee =                       |              |                |                |
| Surcharge over Heel                             | =               |                |                | Surcharge Over Heel =                        |              |                |                |
| Surcharge Over Toe                              | =               |                |                | Adjacent Footing Load =                      |              |                |                |
| Adjacent Footing Load                           | =               |                |                | Axial Dead Load on Stem =                    | 200.0        | 0.92           | 183.3          |
| Added Lateral Load                              | =               |                |                | * Axial Live Load on Stem =                  |              |                |                |
| Load @ Stem Above Soil                          | =               |                |                | Soil Over Toe =                              | 36.4         | 0.29           | 10.6           |
|                                                 | =               |                |                | Surcharge Over Toe =                         |              |                |                |
|                                                 |                 |                |                | Stem Weight(s) =                             | 400.0        | 0.92           | 366.6          |
|                                                 |                 |                |                | Earth @ Stem Transitions =                   |              |                |                |
| Total                                           | = 328.6         | 6 O.T.M. =     | 474.7          | Footing Weight =                             | 229.1        | 0.92           | 210.0          |
|                                                 |                 |                |                | Key Weight =                                 |              | 1.00           |                |
| Resisting/Overturning                           | Ratio           | =              | 2.45           | Vert. Component =                            |              |                |                |
| Vertical Loads used fo                          | r Soil Pressure | e = 1,120.     | 7 lbs          | Total =                                      | 1,120.7      | he DM =        | 1.163.8        |

resistance, but is included for soil pressure calculation.

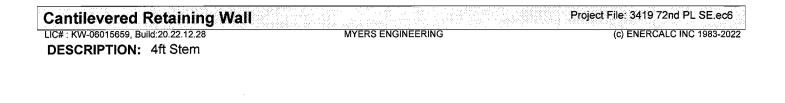
Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

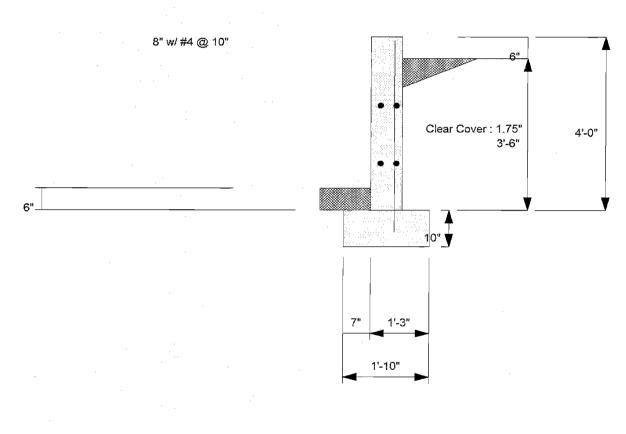
Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

### Tilt

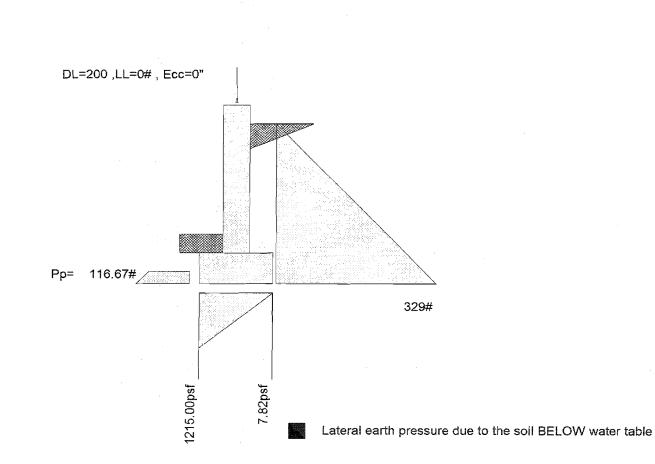
### Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)


Soil Spring Reaction Modulus 250.0 pci


Horizontal Defl @ Top of Wall (approximate only) 0.074 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,


because the wall would then tend to rotate into the retained soil.

| Cantilevered Retaining Wall                         |                                         | Project File: 3419 72nd PL SE.ec6 |  |
|-----------------------------------------------------|-----------------------------------------|-----------------------------------|--|
| LIC# : KW-06015659, Build:20.22.12.28               | MYERS ENGINEERING                       | (c) ENERCALC INC 1983-2022        |  |
| DESCRIPTION: 4ft Stem                               |                                         |                                   |  |
| Rebar Lap & Embedment Lengths Info                  | rmation                                 |                                   |  |
| Stem Design Segment: Bottom                         |                                         |                                   |  |
| Stem Design Height: 0.00 ft above top of footi      | ng                                      |                                   |  |
| Lap Splice length for #4 bar specified in this stem | design segment (25.4.2.3a) =            | 18.72 in                          |  |
| Development length for #4 bar specified in this ste | 14.40 in                                |                                   |  |
| Hooked embedment length into footing for #4 bar     | specified in this stem design segment = | 6.05 in                           |  |
| As Provided =                                       | 0.2400 in2/ft                           |                                   |  |
| As Required =                                       | 0.1728 in2/ft                           |                                   |  |





| Cantilevered Retaining Wa             | l                 | Project File: 3419 72nd PL SE.ec6 |
|---------------------------------------|-------------------|-----------------------------------|
| LIC# : KW-06015659, Build:20.22.12.28 | MYERS ENGINEERING | (c) ENERCALC INC 1983-2022        |
| DESCRIPTION: 4ft Stem                 |                   |                                   |

